Relations and Functions

- 1. Let $f:R \rightarrow R$ be defined by f(x)=2x+3f(x)=2x+3f(x)=2x+3. Find its inverse.
- 2. Determine if $f(x)=x^2$ defined on R is one-to-one.
- 3. Show that the composition of two bijections is a bijection.
- 4. Check whether the relation RRR on {1,2,3} is defined by pairs (1,2), (2,3), (3,1) is transitive.
- 5. If $f(x) = e^x$, find $f^{-1}(y)$ and its domain.

Inverse Trigonometric Functions

- 1. Simplify $\sin^{-1}(0.6) + \cos^{-1}(0.6)$.
- 2. Find the principal value of tan^-1(root(3)).
- 3. Solve $\sin^{-1}(x) + \sin^{-1}(y) = pi/2$.
- 4. Evaluate $tan^{-1}(1/2) + tan^{-1}(2)$.
- 5. If theta = $\cos^{1}(x)$, express $\sin(\frac{1}{x})$.

Matrices

- 1. If A = [[1, 2], [3, 4]], find $A^2 5A + 7I$
- 2. Show that the product of two symmetric matrices is symmetric if and only if they commute.
- 3. Show that I (identity matrix) is the multiplicative identity for matrix multiplication.
- 4. If A is a skew-symmetric matrix, show that $A^T = -A$.
- 5. Determine whether the matrix [[0,1],[-1,0]] is orthogonal.

Determinants

- 1. Solve the system:
 - 2x+3y+z = 5, 4x+y+2z = 6, 3x+2y+4z = 7 using Cramer's Rule.
- 2. Show that the determinant is zero if two rows are identical.
- 3. If A is a singular matrix, show that |A|=0.
- 4. Find the value of k if the system x+2y+3z=1, 2x+3y+4z=2, 3x+4y+kz=3 has infinitely many solutions.
- 5. Prove that |AB| = |A||B| for square matrices A,B.